
433690 IT Project Open Sensor Web Architecture: Core Services

 I

Open Sensor Web Architecture:

Core Services

By

Xingchen Chu

Under the Supervision of

Dr. Rajkumar Buyya

A minor project thesis submitted in partial fulfillment

of the requirement for the degree of

Master of Information Technology

Grid Computing and Distributed Systems Laboratory

Department of Computer Science and Software Engineering

The University of Melbourne, Australia

Dec 2005

433690 IT Project Open Sensor Web Architecture: Core Services

 II

Table of Content

CHAPTER 1 INTRODUCTION ...1

CHAPTER 2 RELATED WORKS..4

2.1 Sensor Applications...4

2.2 Sensor Middleware..6

2.3 Sensor Grid and Sensor Web...7

CHAPTER 3 OPEN SENSOR WEB ARCHITECTURE...8

3.1 Overview ...8

3.2 Sensor Web Enablement ..9

3.2.1 SensorML...10

3.2.2 Observation and Measurement...11

3.2.3 SWE Services...11

CHAPTER 4 DESIGN AND IMPLEMENTATION ..13

4.1 Overview ...13

4.1.1 Service Layer and Service Oriented Architecture ..14

4.1.1.1 Jini...14

4.1.1.2 Web Services ...16

4.1.2 Information Model and XML Data Binding ..17

4.1.3 Sensor Operating System ...18

4.1.4 Sensor Data Persistence ...20

4.2 Services Architecture...21

4.2.1 Sensor Collection Service ..21

4.2.2 Planning and Notification Service..22

4.3 Implementation..23

4.3.1 Sensor Collection Service ..23

4.3.1.1 Core Sensor Collection Service Components ...24

4.3.1.2 Connector Component...26

4.3.1.3 Data Handler Component..27

4.3.1.4 Data Format Component ...28

4.3.1.5 Configuration ..29

4.3.2 Sensor Planning Service...30

4.3.3 Web Notification Service ...31

4.3.4 Sensor Repository Service ...32

CHAPTER 5 EVALUATION ...34

5.1 Test Platform ...34

5.2 Temperature Monitoring Application..35

5.3 Empirical Result..37

5.3.1 Client side ..37

5.3.2 Performance ...38

CHAPTER 6 CONCLUSION AND FUTURE WORKS ..41

REFERENCE ...43

433690 IT Project Open Sensor Web Architecture: Core Services

 III

Abstract

A new trend, called Sensor Web, makes various types of web-resident sensors,

instruments, and image devices as well as repositories of sensor data discoverable,

accessible and where applicable, controllable via the World Wide. A lot of efforts have

been made to overcome the obstacles connecting and sharing the heterogeneous

sensor resources. Open GIC Consortium (OGC) has introduced Sensor Web

Enablement (SWE) concept that is actually a set of specifications including

SensorML, Observation & Measurement, Sensor Collection Service, Sensor Planning

Service and Web Notification Service to implement the Sensor Web. The Open Sensor

Web Architecture (OSWA) proposed by NICTA, at University of Melbourne extends

the SWE and further integrates the Sensor Web and Grid Computing as well as

providing middleware support of Sensor Web. This thesis describes the design and

implementation of the subset of OSWA core middleware including planning,

notification, collection and repository services. These services have been deployed as

Web Services to support both auto-sending and query based sensor applications

running on top of TinyOS [28]. A simple temperature monitoring sensor application

has also developed and deployed onto the Crossbow’s motes. Moreover, integration

test has been conducted under both real sensor hardware provided by Crossbow’s

Development Kit [37] as well as a simulation environment called TOSSIM [36].

Performance evaluation has also been executed in our experiment to demonstrate the

capability and scalability of the collection service.

433690 IT Project Open Sensor Web Architecture: Core Services

 IV

Acknowledgement

I would like to express my gratitude to my supervisor Dr. Rajkumar Buyya. I thank

him for his continues encouragement, support and for sharing his knowledge and

experience. Furthermore, I wish to thank Bohdan Durnota, who is the Visiting

Researcher, Grid Computing Laboratory of University of Melbourne. He takes a lot of

his time with me to discuss the issues of OGC SWE and the solutions as well. He also

shares his great experience in the sensor application area with me. Besides that, I

would like to thank my teammate Jiye Lin, for the pleasure time we discuss the

problems and play basketball. Finally, I wish to express my great appreciation to my

wife Siyin Sun, for her support and understanding over time.

433690 IT Project Open Sensor Web Architecture: Core Services

 1

Chapter 1 Introduction

As the rapid development of sensor technology, sensor nodes that integrate several

kinds of sensors, CPU, memory and a wireless transceiver are currently much more

powerful and smarter. The Sensor networks are long running computing systems that

consist of a collection of sensing nodes working together to collect information about

light or temperature as well as images and other relevant data according to their

specific applications. Wireless sensor networks have been attacking a huge number of

attentions from both academy as well as industry all around the world. As [1] states,

the great ability of the sensor networks to collect information of accuracy and

reliability enables building early warnings and rapid coordinated responses to threats

such as large forest fire, terrible Tsunamis, earthquakes and so forth.

Because of the heterogeneity feature of sensor networks, how to process and make use

of the information gathered by the sensor nodes becomes a rather challenging task of

the research area. The Service Oriented Architecture (SOA) makes it possible to

describe, discovery, and invoke services from heterogeneous platform using SOAP

and XML standard. It is a very important step forward to present the sensors as

important resources which can be discoverable, accessible and where applicable,

controllable via the World Wide Web. Furthermore, it also possible to integrate these

resources with grid computing technology to create an illusion of sensor-grid that

enables the essential strengths and characteristics of sensor networks and grid

computing. In the sensor-grid integration strategy described by [9], various sensor

networks are treated as resources, users can query data through grid resource broker

and the broker will generate the response according to the resources it requires.

433690 IT Project Open Sensor Web Architecture: Core Services

 2

Figure 1 Vision of Sensor Web.

The combination of SOA, grid computing and sensor networks make it possible to

form a web view of different sensor and sensor nodes and treat them as available

services to all of the users who access the web. It brings the heterogeneous sensors

into an integrated and uniform platform with the ability of discovering and accessing.

At NICTA (National ICT Australia Ltd) University of Melbourne, there is an effort

called the OSWA (Open Sensor Web Architecture) to utilize the combination of these

three important technologies. It aims at providing the middleware support and

programming environment for creating, accessing and utilizing sensor services

through the web.

The remainder of this thesis is organized as follows. Related works about the sensor

applications, sensor middleware supports, sensor-grid and sensor webs are described

in chapter 2. The details of OSWA and the Sensor Web Enablement are introduced in

chapter 3. Chapter 4 concentrates on the design and implementation our prototype

middleware. Evaluation has been made in chapter 5 applying the middleware with a

Pollution Detection

Computer Grid

Instrument

Weather forecast

Tusunami Detection

Researcher

Collaborators

Software, Model, Workflow

Sensor Nets

Historical Data

433690 IT Project Open Sensor Web Architecture: Core Services

 3

simple temperature monitoring sensor application. Finally, the thesis concludes with

an outline of future works on the sensor web and the OSWA.

433690 IT Project Open Sensor Web Architecture: Core Services

 4

Chapter 2 Related Works

In this chapter, we briefly discuss the related works in the areas of sensor applications,

sensor middleware, sensor grid and sensor web.

2.1 Sensor Applications

Project Research Group Devices Used

Great Duck

Island

Application

Researchers from UCB/Intel

Research Laboratory

UC Berkeley Mica Mote: Atmel

Atmega 103 microcontroller and

Mica Weather Board includes

temperature, photoresistor,

barometer, humidity and

thermopile sensors [2]

Cane-toad

Monitoring

Researchers from the School

of Computer Science and

Engineering, University of

New South Wales

Crossbow’s Mica mote family:

Mica2 and X-Scale Single Board

Computer [5]

Soil Moisture

Monitoring

Researchers from School of

Computer Science and

Engineering, University of

Western

Crossbow’s Mica2 433 MHz

motes and MDA300 sensor boards

[6]

Integrated

Vehicle Health

Monitoring

(IVHM)

Researchers from CSIRO

Australia, part of NASA

Robust Aerospace Vehicle

Program (RAV)

Texas Instruments TMS320F2810

processor for data acquisition and

an array of acoustic emission

sensors for the proto-type Concept

Demonstrator [7]

Researchers of the Great Duck Island application deployed a mote-based tiered sensor

network on Great Duck Island, Maine, to monitor the behavior of storm petrel [2]. 32

motes were placed at the area of interests, and they are grouped into sensor patches to

transmit sensor reading to a gateway, which is responsible for forwarding the data

from the sensor patch to a remote basestation, as [2] state. The basestation then

provides data logging and replicates the data every 15 minutes to a Postgress database

433690 IT Project Open Sensor Web Architecture: Core Services

 5

in Berkeley over satellite link.

Similarly, the Cane-Toad Monitoring application is designed to monitor cane toads in

Kakadu National Park and the Roper valley of Northern Territory, Australia [3,5].

Two prototypes of wireless sensor networks have been set up, which can recognize

vocalizations of at maximum 9 frog species in northern Australia. Besides monitoring

the frogs, the researchers are also planning to monitor breeding populations of

endangered birds in the future.

The purpose of the Soil Moisture Monitoring application is to better manager surface

water in soil, researchers are trying to design, implement and field-test a prototype

wireless sensor network for soil moisture monitoring. According to [4], a prototype

sensor network for soil moisture monitoring has been deployed at Pinjar, a place

located north of Perth WS on 25 June 2004. All the data is gathered by their reactive

sensor network at Pinjar, and sent back to a database in real time using a SOAP web

service. Besides, [4] also presents that 15 soil moisture probes have deployed to

measure surface soil moisture when flood or drought occurs in early 2005.

A practical IVHM system, according to [7], will be a network containing thousands or

millions of heterogeneous sensors and is used to give a proper response in real-time as

soon as the damage has been detected. They have developed the Concept

Demonstrator (CD) as a prototype and test-bed for detecting and measuring impacts

on the aluminum skin of a space vehicle, where the sensing is performed using an

array of acoustic emission sensors mounted on the inside of the skin. However, as [8]

states, the IVHM system is only designed to be a powerful and flexible test-bed and

an experimental platform, not intending to be a realistic practical prototype.

433690 IT Project Open Sensor Web Architecture: Core Services

 6

2.2 Sensor Middleware

Project Description Remarks

Impala [10] It designed for use in

ZebraNet project as a

middleware architecture that

enables modularity,

adaptivity and reparability in

wireless sensor network

It adopts mobile code techniques

to upgrade functions of the remote

sensors The key to energy

efficient for Impala is for the

sensor node applications to be as

modular as possible, enabling

small updates that require little

transmission energy

MiLAN MiLAN allows applications

to specify a policy for

managing the network and

the sensors [11]

An architecture extends into

network protocol stack and allows

network specific plug-ins to

concvert MiLAN commands to

protocol-specific commands

Cougar [12] Being described as a device

database system, that can

execute queries

It implements a query-based

database interface and uses

SQL-like language for gaining

information of wireless sensor

networks

Mires [13] A message-oriented

middleware and placed on

top of Operating System

It provides high-level services to

the Node application and

implements a publish/subscribe

service intermediating the

communication between

middleware services.

433690 IT Project Open Sensor Web Architecture: Core Services

 7

2.3 Sensor Grid and Sensor Web

Project Description Remarks

Hourglass [14] A data-collection-network

approach to address many of

the technical problems of

integrating

resource-constrained

wireless sensors into

traditional grid applications

has been suggested

It provides a grid API to a

heterogeneous group of sensors.

Those, in turn, provide

fine-grained access to sensor data

with OSGA standards

Sensor Grids

for Air Pollution

Monitoring

[15] introduced a sensor grid

integration methodology by

using of grid services to

encompass high throughput

sensors

Making each sensor becoming a

grid service. The service can be

published in a registry using

standard methods and make

available to other users.

Sensor Web

Enablement

(SWE) [16]

SWE consists of a set of

standard services to build a

unique and revolutionary

framework for discovering

and interacting with

web-connected sensors and

for assembling and utilizing

sensor networks on the web

SWE is still in the draft process

and will be evolving in the near

future, a lot of new specifications

will be developed and introduced

to the actual development of

Sensor Web

GeoSWIFT [17] An open geospatial

information infrastructure for

Sensor Web built at GeoICT

Lab of York University

GeoSWIFT builds on the

OpenGIS standards, XML

messaging technology has been

developed, serving as a gateway

that integrates and fuses

observations from heterogeneous

spatial enabled sensors

IrisNet [18] An software infrastructure

that supports the central tasks

command to collect, filter

and combines sensor feeds

and perform distributed

queries at Intel Research

Center

There are two-tier of IrisNet

architecture including sensing

agents that provide a generic data

acquisition interface to access

sensors, and organizing agents

that are the nodes implementing

the distributed database.

433690 IT Project Open Sensor Web Architecture: Core Services

 8

Chapter 3 Open Sensor Web Architecture

3.1 Overview

Open Sensor Web Architecture is an OGC’s Sensor Web Enablement standard

compliant software infrastructure for providing SOA based access to and management

of sensors proposed at NICTA/Melbourne University. OSWA is a complete standards

compliant platform for integration of sensor networks and emerging distributed

computing platform such as SOA and grid computing. There are several benefits that

the integration has brought to the community. First of all, the heavy load of

information processing can be moved from sensor networks to the

backend-distributed systems such as Grids. The separation is either saving a lot of

energy and power of sensor networks just concentrating on sensing and sending

information or accelerating the process for processing and fusing the huge amount of

information by utilizing distributed systems. Moreover, individual sensor networks

can be linked together as services, which can be register, discover and access by

different clients using a uniform protocol. What is more, according to [9], Grid-based

sensor applications can provide advanced services for smart-sensing by developing

scenario-specific operators at runtime.

The various components defined in OSWA are showed in Figure 2. Four layers have

been defined which are SensorWeb Fabric, SensorWeb Core Middleware, SensorWeb

User-Level Middleware and SensorWeb Applications respectively. Fundamental

services are provided by low-level components whereas components at higher-level

provides tools for creating applications and management of lifecycle of data captured

through sensor networks. The OSWA based platform provides a number of sensor

services such as:

433690 IT Project Open Sensor Web Architecture: Core Services

 9

� Sensor notification, collection and observation

� Data collection, aggregation and archive

� Sensor coordination and data processing

� Faulty sensor data correction and management, and

� Sensor configuration and directory service

The project mainly focuses on providing an interactive development environment, an

open and standards-compliant SensorWeb services middleware and a coordination

language to support the development of various sensor applications.

Figure 2 Open Sensor Web Architecture Overview [9].

3.2 Sensor Web Enablement

The proposed OSWA core middleware is the SWE standard compliant system, as the

SWE becomes the de-facto standard description of SensorWeb development area. It is

very important to understand the details of SWE. Sensor Web Enablement is the

standard specification developed by OGC, which consists of five sub specifications

including SensorML, Observation and Measurement, Sensor Collection Service,

Sensor Planning Service and Web Notification Service. As [16] states, the purpose of

SWE is to make all types of web-resident sensors, instruments and imaging devices,

433690 IT Project Open Sensor Web Architecture: Core Services

 10

as well as repositories of sensor data, discoverable, accessible and, where applicable

and controllable via the World Wide Web. In other words, the goal is to enable the

creation of web-based sensor networks. Figure 3 demonstrates the architecture and

collaboration between components of SWE.

Figure 3 Sensor Web Enablement Architecture [16].

3.2.1 SensorML

Web-enabled sensors provide the technology to achieve rapid access to various kinds

of information from the environment. Presenting sensor information in standard

formats enables integration, analysis and creation of various data “views” that are

more meaningful to the end user and to the computing system which process these

information. Moreover, a uniform encoding benefits the integration of heterogeneous

sensors and sensor platforms to form a uniform, integrated and standard view to the

client. The details of encoding of SensorML are described in [19], which is basically

defined over several XML schemas and extends and reuses a lot of elements from

another OpenGIS standard GML [20]. SensorML is a key component for enabling

autonomous and intelligent sensor webs. It provides the information needed for

433690 IT Project Open Sensor Web Architecture: Core Services

 11

discovery of sensors, including sensor’s capabilities, geo-location and taskability.

Both single sensors and platforms holding numbers of sensors can be described by

SensorML.

3.2.2 Observation and Measurement

Besides providing SensorML that contains information about sensors and sensor

platforms, SWE defines another standard information model and XML encoding for

observations and measurements that are important for Sensor Web to find universal

applicability with web-based sensor networks, according to [16]. The detailed

conceptual model and encoding for observation and measurements can be found at

[21], where the observation has been defined to be an event with a result which is a

value describing some phenomenon. An observation extends the GML feature type

model, which means it contains the essential properties required by GML feature type

such as id, metadataProperty, description, name, location and boundedBy.

Observation and measurement model is required specifically for Sensor Collection

Service and related components of an OGC Sensor Web Enablement capability.

3.2.3 SWE Services

SWE not only provides the information model and encoding like SensorML and

Observation & Measurements, but also defines several standard services that can be

used to collaborate with to obtain data from sensor networks. One of the most

important one is the Sensor Collection Service that is useful to fetch observations

from a sensor or constellation of sensors. As [16] states, it plays a role of intermediary

agent between a client and an observation repository or near real-time sensor channel.

[22] defines the essential operations needed for the service as well as the required

parameters for each operations. Each client who intends to invoke the Sensor

Collection Service must strictly follow the standard specified by [22].

433690 IT Project Open Sensor Web Architecture: Core Services

 12

There are another two useful services provided by SWE including Sensor Planning

Service and Web Notification Service. The Sensor Planning Service focuses on

dealing with planning for the collection actions, which determines the feasibility of

the collecting request and calls the Sensor Collection Service to collect the

observation data if possible. Web Notification Service maintains an asynchronous

dialogues between client and one or more other services for long duration processes,

which may be quite useful when many collaborating services are required to satisfy a

client request.

As the SWE is still evolving, new services will be come out to satisfy other

requirements of Sensor Web development. Until recently, a new service called Sensor

Alert Service has been introduced, which specifies how alert or “alarm” conditions

are defined, detected and made available to interested users. Besides, a new

TransducerML[23] has also been defined, which is an XML based specification that

describes how to capture and “time tag” sensor data.

433690 IT Project Open Sensor Web Architecture: Core Services

 13

Chapter 4 Design and Implementation

4.1 Overview

OSWA defines the big picture of how to build the Sensor Web and how each

components should collaborate with each other, it is still a lot of design issues to

consider not only including the common problems faced with other distributed system

such as security, multithreading, transactions, maintainability, performance,

scalability and reusability, but also need some critical decisions to be made about

which alternative technologies are best suitable for the project. Figure 4 depicts the

Figure 4 Overview Layered Architecture of OSWA.

433690 IT Project Open Sensor Web Architecture: Core Services

 14

layered architecture of the OSWA, this thesis concentrates on the Service Layer and

Sensor Layer especially on the design and implementation of Sensor Collection

Service, the XML encoding and its communication with the sensors and sensor

networks. The following section will describe the key technologies that relevant to

different layers of the OSWA.

4.1.1 Service Layer and Service Oriented Architecture

The SOA is the essential infrastructure that supports the Service Layer and plays a

very important role to present the core middleware components as services for client

to access. The reason why OSWA heavily relies on SOA is quite obvious since SOA is

a loose coupling distributed architecture and can make interoperability of the

heterogeneous systems possible. Moreover, SOA allows the services to be published,

discovered and invoked by each other on the network dynamically. All the services

communicate with each other through predefined protocols via messaging mechanism,

which supports both synchronous and asynchronous communication model. As the

sensor networks basically differ from each other, trying to put different sensors on the

web through uniform operations to discover and access them requires the adoption of

SOA. There are two famous and mature implementations that confirm to SOA

including Jini developed by Sun Microsystems and Web Services promoted by

majority of industry vendors. Both of them have their own advantages and

disadvantages, which discusses in the following sections.

4.1.1.1 Jini

Jini is a lightweight environment for dynamically discovering and using services on a

network. According to [24], resources in Jini system can be implemented as either

hardware devices, software program, or a combination of the two, which can also be

added and deleted as services. Consequently, Jini enables users to share services and

resources over a network and to access them anywhere on the network. As [24] states,

services in a Jini system communicate with each other by using a service protocol,

433690 IT Project Open Sensor Web Architecture: Core Services

 15

which is a set of predefined interfaces written in Java including a universal lookup

service and Java RMI. Jini also support advanced mechanism like leasing, distributed

transaction, security and events. Figure 5 illustrates the basic Jini programming model,

every client who wants to use a service or resource need to contact lookup service to

find the service by its java interface type and possible type attributes, once the service

or resource from service provider has joined to Jini previously, lookup service moves

a copy of service object to the client. The three components in Jini programming

model exactly reflect the roles they play in SOA.

Figure 5 Jini Basic Programming Model.

The biggest advantage of Jini is that it allows the hardware devices plug into the

network as software services easily, which means clients can access and control if

authorized hardware devices utilizing simple interfaces without being aware of their

complexity in Jini environment. Consequently, Jini is best suitable for the applications

like Smart Home that require communicating with diversity of appliances such as

printer, fax machine, light, alarm, TV, CD, or even refrigerator and microwave.

Moreover, Jini introduces the concept of leasing that means every service has to be

granted access over a period of time by leasing first, and whenever the leasing is

expired, the leased resources are forced to be released. Leasing enhance the capability

of self-healing to Jini environment once failures happen on the network.

Lookup Service

Join

Invoke

Lookup

Service Object

Service Attributes

Service Provider

Service Object

Service Attributes

Client

Service Object

433690 IT Project Open Sensor Web Architecture: Core Services

 16

However, Jini relies heavily on Java Virtual Machine that means every service

intending to join the network needs to support Java VM. The restriction largely limits

the usage of Jini worldwide, especially for those who are not willing to use Java

platforms. Furthermore, Jini uses Java RMI as its standard communication model that

has potentially low interoperability and does not inherently support asynchronous

communication model that is vital important for most SOA based applications.

4.1.1.2 Web Services

Web Services, technologically, depend on a group of standard specifications including

HTTP, XML, Simple Object Application Protocol (SOAP), Universal Description

Discovery and Integration (UDDI), Web Services Description Language (WSDL).

XML is the key of Web Services technology, which is the standard format of the

messages exchanges between services, and moreover all most every specifications

used in Web Services are themselves XML data such as SOAP and WSDL. SOAP

provides a unique framework that for packaging and transmitting XML messages over

variety of network protocols, such as HTTP, FTP, SMTP, RMI/IIOP or proprietary

messaging protocol [26]. WSDL describes the operations supported by web services

Figure 6 Typical architecture of Web Service.

and the structure of input and output messages required by these operations as well as

the important information about web services including definition, support protocol,

processing model and address. The architecture for Web Services is showed in Figure

Service

Registry

 Service

Consumer

Publish (WSDL)

Invoke (SOAP)

Discover (UDDI)

Service

Provider

433690 IT Project Open Sensor Web Architecture: Core Services

 17

6, it is quite similar with Jini except that the lookup service in Web Services is UDDI,

a more complex but powerful model for registry service.

There are several aspects that Web Services is exceeding Jini. First of all, unlike Jini,

Web Services is a language and platform neutral technology that can be implemented

using any programming language in any platform. For example, a service written in

C# can be accessed by a client written in Java. Furthermore, the use of XML and

XML-based protocols such as SOAP and WSDL largely improves the interoperability

of the applications, as both parties share one services need to conform to the

operations and the passing message format defined by WSDL. What is more, the

message-oriented approach of Web Services is inherent support both synchronous and

asynchronous communication model. In addition, the adoption of SOAP as its

standard transport protocol makes it extremely flexible with diversity of network

protocols. As OSWA is primarily based on SensorML and other related XML data

models, Web Services provide a much better solution compared with Jini in terms of

interoperability and flexibility.

4.1.2 Information Model and XML Data Binding

The information model of OSWA is based on Observation&Measurement and

SensorML, both of them are built upon XML standard and defined by XML Schema.

Transforming data representation of the programming language to XML that conform

to XML Schema refers to XML data binding and is a very important and error-prone

issue that may affect the performance and reliability of the system. In general, there

are two common approaches to solve this problem. The first and obvious way is to

build the encoder/decoder directly by hand using the low-level SAX parser or DOM

parse-tree API, however doing so is likely to be tedious and error-prone and

generating many redundant codes that are quite hard to maintain. A better approach to

deal with the transformation is to use XML data binding mechanism that

automatically generates the required codes according to DTD or XML Schema. As

433690 IT Project Open Sensor Web Architecture: Core Services

 18

[27] states, Data binding approach provides a simple and direct way to use XML in

the applications without being aware of the details structure of XML documents,

instead working directly with the data content of those documents. Moreover, [27]

also points out that Data binging approach makes accessing to data faster since it

requires less memory than a document model approach like DOM or JDOM for

working with documents in memory.

There are quite a few Java Data binding tools available such as JAXB, Castor, JBind,

Quick and Zeus according to [27], and another greater tool Apache XMLBeans [34].

Although JAXB is the reference implementation by Sun, it is not suitable for OSWA

as the data model definition of SensorML [19] uses a lot of advanced features of XML

Schema that JAXB does not support currently. However, it will be a good choice in

the future and definitely play an important role in working with XML and Java

technologies, as Sun promises that JAXB 2.0 [33] will 100% support XML Schema

and become standard part of J2EE platform. Among those open source tools,

XMLBeans seem to be the best choice not only because it provides fully support for

XML Schema, but also does it provide extra valuable features like XPath and XQuery

supports, which directly enables performing queries in the XML documents.

4.1.3 Sensor Operating System

As OSWA has the ability of dealing with heterogeneous sensor networks that may

adopt quite different communication protocols including radio, blue tooth, and

ZigBee/IEEE 802.11.4 protocols, it is quite desirable that the operating system level

support for sensor networks can largely eliminate the work of developing device

drivers and analyzing various protocol stacks directly in order to concentrate on

higher-level issues related to the middleware development.

TinyOS [28] is the de-facto standard and very mature Operating System for wireless

sensor networks, which consists of a rich set of software components developed by

433690 IT Project Open Sensor Web Architecture: Core Services

 19

NesC language, ranging from application level routing logic to low-level network

stack. TinyOS provides a set of Java tools in order to communicate with sensor

networks via a program called SerialForwarder, which runs as a server on the host

machine and forward all the package receiving from sensor networks to the local

network, depicted by Figure 7. Once the SerialForwarder program is running, the

software located on the host machine can parse the raw package and process the

desired information. TinyDB [29] is another useful component built on top of TinyOS,

which constructs an illusion of distributed database running on each node of the

sensor networks. SQL-like queries including simple and even grouped aggregating

queries can be executed over the network to acquire data of sensors on each node.

Figure 7 TinyOS SerialForwarder Architecture.

Besides TinyOS, there are other Operating Systems existing as well. MANTIS [30] is

a lightweight multithreaded sensor operating system, which supports C API enabling

the cross-platform supports and reuse of C library. Moreover, it supports advanced

sensor features including multi-model prototyping environment, dynamic

reprogramming and remote shell. Contiki [31], which is designed for memory

constrained systems, is another event-driven sensor operating system like TinyOS

with highly dynamic nature that can be used to multiplex the hardware of a sensor

network across multiple applications or even multiple users.

433690 IT Project Open Sensor Web Architecture: Core Services

 20

4.1.4 Sensor Data Persistence

Persistence is one of the most important aspects for the purpose of manipulating the

huge amount of data that relevant to both sensor observation as well as sensor

information. As the standard data format exchanging between services are XML data

that conform to O&M and SensorML schema, transformations need to be done

between different views of data including XML, Java object and relational database.

In order to ease the operation of the transformation, the O/R mapping solution has

been adopted to support the data persistence.

Java Data Objects (JDO) is one of the most popular O/R mapping solutions, which

defines a high-level API that allows applications to store Java objects in a

transactional data store by following defined standards. It supports transactions,

queries, and the management of an object cache. JDO provides for transparent

persistence for Java objects with an API that is independent of the underlying data

store. JDO allows you to very easily store regular Java classes. JDOQL is used to

query the database, which uses a Java-like syntax that can quickly be adopted by

those familiar with Java. Together these features improve developer productivity and

no transformation codes need to be developed manually as JDO has done that

complicated part underneath. To make use of JDO, the JDO Metadata is needed to

describe persistence-capable classes. The information included is used at both

enhancement time and runtime. The metadata assocoiated with each

persistence-capable class must be contained within an XML file. In order to allow the

JDO runtime to access it, the JDO metadata files must be located at paths that can be

accessed by Java classloader.

433690 IT Project Open Sensor Web Architecture: Core Services

 21

4.2 Services Architecture

4.2.1 Sensor Collection Service

Sensor Collection Service is one of the most important component resides in the

OSWA core middleware layer. As can be seen in Figure 1, Sensor Collection Service

is the fundamental and unique component that needs to communicate directly with

sensor networks, which is responsible for collecting real time sensing data and then

translating the raw information into the XML encoding for other services to utilize

and process. In other words, Sensor Collection Service is the key entering into the

sensor networks from outside clients and its design and implementation will affect the

entire OSWA. The design of Sensor Collection Service provides interface to both

streaming data and query based sensor applications that are built on top of TinyOS

and TinyDB respectively.

Figure 8 Sensor Collection Service Architecture.

Figure 8 illustrates the architecture of the Sensor Collection Service, it is conformed

to the interface definition that is described by [22] and has been designed as a web

service that work with a proxy connecting to either real sensor or remote database.

433690 IT Project Open Sensor Web Architecture: Core Services

 22

Clients needs to enquiry the Sensor Registry Service about available SCS WSDL

address according to their requirements and send data query via SOAP messages to

the SCS in order to obtain the observation data conformed to the XML schema

defined by Observation & Measurement [21]. The proxy acts as an agent working

with various connectors that connect to the resources holding the information, and

encoding the raw observation to O&M compatible data. Different type of connectors

have been designed to fit into different kind of resources including sensor networks

running on top of TinyOS or TinyDB and remote observation data archives. The

proxy needs to process the incoming messages from client to determine what kind of

connectors either real-time based or archive based to use.

The design of the SCS is quite flexible and makes it quite easy to extend for further

development if different sensor OS are adopted by the sensor networks such as

MANTIS or Contiki. The only work is to implement a specific connector in order to

connect to those resources and no modifications need to be made in the current system.

The design of the proxy also encourages the implementation of cache mechanism to

improve the scalability and performance of the SCS. Load balancing mechanism can

be added to the system easily as well by simply deploying the web service to different

servers.

4.2.2 Planning and Notification Service

Sensor Planning Service and Web Notification Service are another two very important

services that are usually working together. Planning Service is the one that actually

communicate with the end user and invoke the notification service as well as the

collection service. Web Notification service provide an asynchronous way to

communication with the end users.

433690 IT Project Open Sensor Web Architecture: Core Services

 23

Figure 9 SPS, WNS and SCS Services Architecture.

Figure 9 illustrates the architecture of relating services. Once the end user make an

observation plan to the Planning Service, it checks the feasibility of the plan and

submit the plan if it is feasible. The user will be registered in the Web Notification

Service during this process and the user id will return to SPS. SPS is responsible to

create the observation request according to user’s plan and get the O&M data from the

Sensor Collection Service. As soon as the O&M data has been ready, SPS will send an

operation complete message to the WNS along with the user id and task id, WNS will

notify the end user to collect the data via email or other protocols it supports.

4.3 Implementation

4.3.1 Sensor Collection Service

Sensor Collection Service is the most important as well as complicated service to

implement. It is not only responsible for connecting to various resources to collect

their observation data, but also does it parse and format those data into standard O&M

format. Our goal is to make the SCS quite flexible and easy to extend for different

sensor applications and heterogeneous resources they may choose to use in their

applications. There are four important components: Proxy, Connector and Data

Handler and Data Formatter in the SCS implementation. Developers can extend the

Connector, DataHandler and DataFormatter interfaces to fulfill their specific

433690 IT Project Open Sensor Web Architecture: Core Services

 24

application requirements. The following section will discuss these components in

details.

4.3.1.1 Core Sensor Collection Service Components

As demonstrated by Figure 10, the SensorCollectionService interface defines the

basic operation getObservation that is the most important one that actually fetch the

observation data to the O&M format. The parameter passing into getObservation

needs to conform to the XML Schema definition in [22].

Figure 10 Sensor Collection Service Main Class Diagrams.

Below is an example of this standard parameter to query the sensor whose sensing

temperature is larger than 500.

<GetObservation xmlns="http://www.opengis.net/scs"

version="0.1" service="OGC Sensor Collection Service"

ouputFormat="SWEObservation">

<BoundingBox />

<Query xmlns=”http://www.opengis.net/wrs”

typeName="TinyDB Observation Example">

<PropertyName xmlns="http://www.opengis.net/ogc">

SWEObservation

</PropertyName>

<QueryConstraint>

<Filter xmlns="http://www.opengis.net/ogc">

<PropertyIsGreaterThan>

433690 IT Project Open Sensor Web Architecture: Core Services

 25

<PropertyName>temp</PropertyName>

<Literal>500</Literal>

</PropertyIsGreaterThan>

</Filter>

</QueryConstraint>

</Query>

</GetObservation>

Currently, the implementation supports four kinds of condition rules including less

than, larger than, equals and not equals. As getObservation is the key operation of

SCS, let us take a close look at the sequential diagram of getObservation showing in

Figure 11 and Figure 12 to better understand how it works in both Client and Server

side.

Figure 11 getObservation operation sequential diagram: Client Side.

The client, who intends to get the observation for some purpose, contacts the

SensorCollectionServiceStub, which is a stub object running on client side to send

and receive SOAP messages to a SensorCollectionServiceEndpoint object which

simply delegate the call to SensorCollectionService on the server side via HTTP. The

response of the client’s request will be a SWEObservation instance that is a Java

Object that stands for the O&M XML data from server.

433690 IT Project Open Sensor Web Architecture: Core Services

 26

What happens inside server is far more complicated compared with the call on client

side. Once receiving a request, SensorCollectionService translates the request data

into a query that is generated by QueryGenerator. For example, the previous request

XML data will be translated to a query string like “SELECT * FROM Sensors

WHERE temp>500”. Then SensorCollectionService looks up the available proxy

according to timestamp client required by asking RepositoryService that maintains a

table of available proxy instances, either RealTimeProxy or DBProxy.is returned to

the SensorCollectionService. As soon as the proxy is available, queries will be sent to

the Connector that has registered message listeners and data handlers to process the

incoming messages from the real source either sensors or database. All the raw

observation data need to be formatted into the required O&M format, which is done

by DataFormatter. Before sending the O&M data back to the client, it will be pushed

into the repository for further queries.

Figure 12 getObservation operation sequential diagram: Server Side.

4.3.1.2 Connector Component

The most important component inside SCS is the Connector, which provides the

433690 IT Project Open Sensor Web Architecture: Core Services

 27

gateway to the heterogeneous resources. There are various implementations of

connector that each is responsible for connecting to a specific type of resource.

TinyDBConnector and SerialBasedSensorConnector are two implementations of the

connector showing in Figure 13.Both of them utilize the Java interface called MoteIF

provided by TinyOS to listen to the serial server on “sf@<host-ip>:<port-no>”

created by SerialForwarder [35].

Figure 13 Connector Component Class Diagrams.

As soon as the messages coming from resources arrives in asynchronous way to the

listener, a specific data handler for different kinds of application processes each

message according to its requirement, and when the number of processed messages

reaches the predefined number about how many messages need to handle, the listener

will notify the connector to collect the result by setting a dataReady tag. The listener

forwards the data to DataHandler to process rather than dealing with the data itself.

4.3.1.3 Data Handler Component

DataHandler is the component that actually processes the data received from the

resources. Every connector needs to register a listener and a data handler in order to

receive the data from resources and process them, as illustrated in Figure 14. As every

application has its unique features of the data it wants to provide, the developer needs

to implement their own concrete DataHandler class in order to process their specific

requirements of the messages. Two concrete implementations of DataHandler have

433690 IT Project Open Sensor Web Architecture: Core Services

 28

been provided which process the message collecting from TinyDB and the Surge

application [35] respectively.

Figure 14 Data Handler Components Class Diagrams.

4.3.1.4 Data Format Component

Figure 15 Data Formatter Component Class Diagrams.

As the SCS client needs the standard O&M data format not just the raw observation

data, it is essential to convert the raw observation data into the O&M data. The

DataFormatter component demonstrated in Figure 15 is the key to this issue. It is

quite understandable that each sensor application concentrates on different kinds of

information; therefore, there are various implementations of DataFormatter to match

433690 IT Project Open Sensor Web Architecture: Core Services

 29

each specific application and define its own dictionary and measurement for the

targeting data. MicasbTinyDBObservationFormatter and SurgeDataFormatter are two

of those DataFormatters, which deal with the TinyDB application and Surge

application [35] respectively.

4.3.1.5 Configuration

The Sensor Collection Service is designed to be highly adaptable and plugable, and

different service providers of the SCS may require having their own configurations. A

configuration file named application.properties is available to accomplish this task

along with a class called ObjectFactory who can create object and get attributes from

the configuration file. Instances of Proxy, Connector, DataHandler and DataFormatter

are created via calling ObjectFactory’s createObject method, which looks up the

concrete class name defined in the configuration file. Application specific settings can

also be provided in the configuration file. Below is an example configuration file

residing in the host machine running TinyDB application in TOSSIM [36] simulation

environment. All supported configuration keys are defined in GlobalConstant.java.

#new setting for query generator

org.sensorweb.core.generator.QueryGenerator=

org.sensorweb.core.scs.SensorSQLGenerator

#class for sensor proxy for tinydb applications

org.sensorweb.core.sensor.Proxy=

org.sensorweb.core.scs.DBProxy

#class for db connector

org.sensorweb.core.db.Connector=

org.sensorweb.core.scs.tinyos.tinydb.TinyDBConnector

#class for data formatter of tinydb application

org.sensorweb.core.DataFormatter=

org.sensorweb.core.scs.tinyos.tinydb.MicasbTinyDBObservationFormatter

#mote settings for simulation communication connection

serial.comm-string=tossim-serial

#default group-id for tinydb application

serial.group-id=125

#tinydb setting

tinydb.catalog=D:/jakarta-tomcat-5.0/webapps/SensorWeb/WEB-INF/catalog.xml

#application settings

record.number=5

433690 IT Project Open Sensor Web Architecture: Core Services

 30

4.3.2 Sensor Planning Service

The Sensor Planning Service implementation currently only supports two standard

methods of the OGC SPS specification, they are getFeasibility and submitRequest.

Both of them accept a request collection that is defined to take a simple planning for

monitoring different range of temperature. The SPS will be the service that

communicates directly with the SensorWeb Clients who wants to collect some data.

The GetFeasibility method will check the client’s request according to the rule defined

to support the valid range of temperature to monitor. If the request is feasible, the

GetFeasibility method will then send request to the WNS to register the user in order

to receive any notification. The response of the GetFeasibility method will be a

Boolean value to indicate whether the request is feasible and a user id. Once the

request is feasible, the client can then submit their request form to SPS by invoking

the submitRequest method defined in SPS. This method deals with the request and

generates the query, which is conformed to the SCS getObservation input parameter

schema, according to the request, and then asks the SCS to get the o&m information.

If the getObservation succeeds, SPS will notify WNS OPERATION_COMPLETE,

otherwise an OPERATION_FAILED notification will be sent. The response of the

submitRequest will be a task id for clients to get the observation data. Asynchronous

communication has been used in SPS, once the user submit the request, it will

immediately get the response task id and clients will be notified by the WNS if the

data is ready to collect.

As Figure 16 shows, the SPS will ask the users to fill a request form with required

information related to user as well as their plan. We implement a very simple plan

scenario that allows the users to adjust the temperature they want to monitor., the

users need to specify the operator as well as the base temperature in the plan along

with their names and contact details in order to receive the notification. Once users

click the submit button, the request will be processed at the backend and users will the

433690 IT Project Open Sensor Web Architecture: Core Services

 31

notification as soon as the request has been done.

Figure 16 Simple Temperature Planning Request Form.

4.3.3 Web Notification Service

The WNS implementation supports two basic methods that defined in OGC WNS

specification, which are registerUser and doNotification. Also in order to manager the

user account, a JDBC-based UserAccountManager has been implemented to maintain

the user account. Besides, a CommunicationProtocol interface has also been provided

to support various protocol defined in WNS. Currently, only email protocol has been

implemented that can be used to notify clients by emails.

The registerUser method accepts the name and contact of the client, and save them in

the database through the JDBCUserAccountManager.saveUser method. It also request

the IDGenerator to generate a BigInteger value as the user id. And this id will be

returned to client. The doNotification method process the incoming message that

contains the user id and it find the contact details of the user according to the id and

then set the proper communication protocol for the client. And it will send the

message to the user through the specific protocol. In our case, the protocol is to send

message by email. And the email will tell the client the URL to collect the data

according to a key composed by user id and task id. The WNS is mainly called by the

SPS and won’t accept request directly from the end user. It just sends notifications to

the client if the SPS asking it to do it by invoking doNotification method, such as the

433690 IT Project Open Sensor Web Architecture: Core Services

 32

way the submitRequest method does. Figure 17 demonstrates the notification email

received by the users to indicate the information they need to get the observation data.

Figure 17 Notification Email to tell user to collect data.

Once the user clicks the URL, the observation data will be parsed and showed by a

DataCollector servlet, as Figure 18 shows. Also extension can be easily made by

implementing the DataCollector interface to allow getting the raw XML data for

further processing.

Figure 18 Observation Data demonstrated by the DataCollector servlet.

4.3.4 Sensor Repository Service

Repository of sensor observation data as well as sensor information is quite important

for other services like collection service that may manipulate data over the repository

as well as querying it. Just like other services, Sensor Repository Service is deployed

as a web service that can be accessed via SOAP messages. The primary idea to

implement the repository as web services is trying to make the sensor repository

433690 IT Project Open Sensor Web Architecture: Core Services

 33

globally accessible that better supports other services to access it.

There are two important sets of operations that are allowed in the Sensor Repository

Service including data manipulation and data query operations. Currently, the service

only support save and query operations, which can write the O&M data into the

repository and get the O&M data according to the query passing to the operation. JDO

and JPOX 1.0 as its reference implementation have been adopted to implement the

operation, which has created 72 tables required for storing all O&M data. To make

those objects accessible to JDO runtime, as showed by Figure 19, a metadata file is

required for each object to describe the mapping between the object fields and

database fields, and each class needs to be enhanced by the JDO runtime.

Figure 19 An example of metadata file.

As the SOAP messages are O&M XML data, they cannot be directly stored into the

repository, it is necessary to decode the O&M data into enhanced java objects that are

able to make persistence by JDO and vice verse. Furthermore, the queries passed to

the query operation are XML data that follows the same schema as the parameter

passed to the getObservation operation of Collection Service. A JDOQueryGenerator

class has been provided to support the translation between the query parameter to the

JDOQL, which can be used to query objects by JDO. Although, O&M data can be

stored and queried via the Sensor Repository Service, it currently does not support the

manipulation of SensorML data that means that the discovery and registry of sensors

are not available.

433690 IT Project Open Sensor Web Architecture: Core Services

 34

Chapter 5 Evaluation

5.1 Test Platform

The test platform for the prototype system is built upon TOSSIM [36] and Crossbow’s

MOTE-KIT4x0 MICA2 Basic Kit [37] that consists of 3 Mica2 Radio board, 2

MTS300 Sensor Boards, a MIB510 programming and serial interface board. Figure

20 demonstrates the deployment diagram of the entire system. The Sensor Collection

Service has been deployed on Apache Tomcat 5.0 on two different machines that run

TinyDB application under TOSSIM and Temperature Monitoring Application under

Crossbow’s motes respectively. Meanwhile, a Sensor Registry Service is also

configured on a separate machine that provides the functionality to access sensor

repository.

Figure 20 Deployment Diagram of Prototype system.

433690 IT Project Open Sensor Web Architecture: Core Services

 35

TOSSIM [36] is a discrete event simulator that can simulate thousands of motes

running complete sensor applications and allow a wide range of experimentation.

Moreover, a GUI called TinyViz providing detailed visualization and actuation of a

running simulation has been developed in order to allow developers to easily

transition between running an application on motes and in simulation. To make use of

TOSSIM, the serial.comm-string property in the configuration file needs to be set as

tossim-serial in order to tell the connector to creating the MoteIF listening the server

on sf@tossim-serial.

5.2 Temperature Monitoring Application

A simple temperature monitoring application is also developed in order to test the

SCS. The application is programmed using NesC [35] and the logic is really simple,

which just simply broadcasts the sensing temperature, light and node address to the

sensor network over a fixed period of time. The simple application does not consider

any multi-hop routing and energy saving mechanism, more complicated application

has also planned to use such as Surge application. Before installing the application to

the Crossbow’s mote, the functionality can be verified via the TOSSIM simulator.

Figure 21 simply illustrates the application running in TOSSIM.

Figure 21 Simulation of Temperature Monitoring Application.

433690 IT Project Open Sensor Web Architecture: Core Services

 36

The code snippet below illustrates the core part of the application.

 event result_t Timer.fired()

 {

 call Temperature.getData();

 return SUCCESS;

 }

 task void sendTask() {

 atomic {

 pack.address = TOS_LOCAL_ADDRESS;

 ((struct TempMsg)msg.data) = pack;

 }

 if (call SendMsg.send(TOS_BCAST_ADDR, sizeof(struct TempMsg),&msg))

 {

 call Leds.yellowToggle();

 }

 }

 async event result_t Temperature.dataReady(uint16_t thisData) {

 atomic {

 pack.temperature = thisData;

}

call Light.getData();

 return SUCCESS;

 }

 async event result_t Light.dataReady(uint16_t thisData) {

 atomic {

 pack.light = thisData;

 }

 post sendTask();

 return SUCCESS;

 }

Figure 22 – Network Topology of the Temperature Application

433690 IT Project Open Sensor Web Architecture: Core Services

 37

Once the application has been successfully installed into each mote via the

programming board, a wireless sensor network has been built with two nodes, and one

base station connecting to the host machine via the serial cable. Figure 22

demonstrates the topology of the temperature application. Besides installing the

application itself, the SerialForwarder program also needs to run on the host machine

in order to forward the data from the sensor network to the server. The

serial.comm-string in the configuration file must be set to the same value as the server

name of SerialForwarder as depicted by Figure 23.

Figure 23 SerialForwarder Program GUI.

5.3 Empirical Result

5.3.1 Client side

Both the TinyDB under TOSSIM and Temperature Monitoring Application have been

tested using the same test client. The result for TinyDB application is demonstrated in

Figure 24 and Figure 25.

433690 IT Project Open Sensor Web Architecture: Core Services

 38

Figure 24 Test Result for TinyDB application under TOSSIM.

Figure 25 Output Information under Tomcat 5.0 Server.

5.3.2 Performance

Performance test has been concentrated on the SCS, as it plays the critical role and

most heavily load service in the entire system. The performance measured by second

for both auto-sending and query-based application running on top of TinyOS are

433690 IT Project Open Sensor Web Architecture: Core Services

 39

demonstrated by Figure 26 and 27. R e s p o n s e T i m e f o r c o l l e c t i n g r e a l - t i m ed a t a
02 0 04 0 0

N u m b e r o f C l i e n t s
Second 1 r e c o r d1 0 r e c o r d s2 0 r e c o r d s1r e c o r d 2 . 0 5 2 . 1 3 . 5 7 2 2 . 91 0r e c o r d 1 2 . 1 1 6 . 3 2 7 1 7 31 5 5 0 5 0 0

Figure 26 Performance for collecting auto-sending data. Response Time for collecting TinyDB query data
0200400600

Number of Clients
Second 1 record10 records20 records1 record 34.2635 164.3177510 records 76.5 395.27252520 records 96.05 492.211 5

Figure 27 Performance for collecting TinyDB query data.

As can be seen from Figure 26, the result for the auto-sending mode application is

quite moderate when the number of clients who request the observation simultaneity

is quite small. Even the number of clients reaches 500, the response time for small

number of records is also acceptable. In contrast, the result showed in Figure 27 is

fairly unacceptable even just one client requesting one observation takes 34 second.

The response time increases near linearly when the number of clients and the number

of records go up. The reason why the query-based approach has very pool

433690 IT Project Open Sensor Web Architecture: Core Services

 40

performance is due to the execution mechanism of TinyDB. A lot of time has been

spent on initializing each motes and the application can only execute one query at one

time, which means another query needs to wait until current query has been stopped

or terminated. A solution to this problem may require the TinyDB application run a

generic query for all clients, and the more specific query can be executed in-memory

according to the observation data collecting from the generic query.

There are several possible ways to enhance the performance of the Sensor Collection

Service. Cache mechanism may be one of the possible approach, the recent collected

observation data can be cached in the proxy for a given period of time and the clients

who request the same set of observation data can be read the observation data from

the cache. However, as the data should be remained as real time as possible, it is quite

hard to determine the period of time for the cache to be valid. It may be decided

according to the dynamic feature of the information the application is targeting. For

example, the temperature for a specific area may not change dynamically by minutes

or by hours. Consequently, the period of time setting for the cache can differ from

sensor application itself based on the information the sensor targeting. Another

enhancement of query performance may be achieved by utilizing the query

mechanism such as XQuery of the XML data directly other than asking the real sensor

itself executing the query like TinyDB application.

433690 IT Project Open Sensor Web Architecture: Core Services

 41

Chapter 6 Conclusion and Future Work

In this thesis, we have surveyed the related works about the sensor applications,

sensor middleware, sensor grid integration as well as sensor web to show the

importance of those work and the challenges it has to face with. Then, we have

discussed the proposed Open Sensor Web Architecture (OSWA) that aims at providing

an integration platform to discover, access heterogeneous sensor networks and then

process the information collected from those resources accompanying with Grid

Technology. Moreover, a service-oriented prototype of Sensor Collection Service,

Sensor Planning Service, Web Notification Service and Sensor Repository Service,

have been designed and implemented targeting the sensor applications running on top

of TinyOS.

However, we are still in the earlier stage of having the entire OSWA implemented and

even those services that we have implemented are not a fully functioned. Sensor

Collection Service is the key component of the entire OSWA, which affects the whole

performance and reliability of the system. A lot of issues remain to future

investigation focusing on aspects of reliability, performance optimization and

scalability. There are a couple of efforts that are needed to make to enhance the SCS

and other services in the following stage.

� The query mechanism for the Sensor Collection Service will be enhanced to

support in-memory XML document query. XPath and XQuery technologies are

planning to be adopted, as they are the standard way to query XML document.

The outcome of this enhancement is expected to improve the performance by

moving the heavy workload of queries from sensor network itself to the host

machine.

� Caching mechanism may be implemented and placed into the Proxy to further

433690 IT Project Open Sensor Web Architecture: Core Services

 42

enhance the performance and scalability.

� Publish/Subscribe messaging mechanism needs to be included as the alternative

communication model coexistence with the synchronous approach in the SCS.

� Other methods that described in the specifications of SWE services but are not

available currently need to be implemented.

� Other notification protocols needs to be built for the WNS in the future.

� Sensor Registry via SensorML needs to be developed in order to support the

worldwide sensor registry and discovery.

433690 IT Project Open Sensor Web Architecture: Core Services

 43

Reference

1. Sensor Networks Homepage, http://www.sensornetworks.com.au/index.html.

2. Alan Mainwaring, Joseph Polastre, Robert Szewczyk, David Culler, and John

Anderson.Wireless sensor networks for habitat monitoring, In ACM

International Workshop on Wireless Sensor Networks and Applications

(WSNA'02), Atlanta, GA, September 2002.

3. A HYBRID SENSOR NETWORK FOR CANE-TOAD MONITORING,

http://www.cse.unsw.edu.au/~sensar/research/projects/cane-toads/.

4. Soil Moisture Monitoring with Wireless Sensor Networks project Homepage,

http://www.csse.uwa.edu.au/adhocnets/WSNgroup/soil-water-proj/.

5. W. Hu, V.N. Tran, N. Bulusu, C.T. Chou, S. Jha and A. Taylor. “The Design

and Evaluation of a Hybrid Sensor Network For Cane-toad Monitoring”, In

Proceedings of Information Processing in Sensor Networks

(IPSN2005/SPOTS 2005), Los Angeles, CA, April 2005.

6. R. Cardell-Oliver, K. Smettern, M. Kranz and K. Mayer. “Field Testing a

Wireless Sensor Network for Reactive Environmental Monitoring”,

International Conference on Intelligent Sensors, Sensor Networks and

Information Processing ISSNIP-04, Melbourne, December 2004

7. M. Hedley, M. Johnson, C. Lewis, D. Carpenter, H. Lovatt and D. Price.

“Smart Sensor Network for Space Vehicle Monitoring”, In Proceedings of the

International Signal Processing Conference, Dallas, Texas, March 2003.

8. D. C. Price , D. A. Scott, G. C. Edwards, A. Batten, A. J. Farmer, M. Hedley,

M. E. Johnson, C. J. Lewis, G. T. Poulton, M. Prokopenko, P. Valencia and P.

Wang. “An Integrated Health Monitoring System for an Ageless Aerospace

Vehicle”, Structural Health Monitoring 2003

9. Chen-Khong Tham and Rajkumar Buyya, “SensorGrid: Integrating Sensor

Networks and Grid Computing”, Technical Report, GRIDS-TR-2005-10,

Grid Computing and Distributed Systems Laboratory, University of

Melbourne, Australia, June 24, 2005

10. T. Liu and M. Martonosi, “Impala: a Middleware System for Managing

Autonomic, Parallel Sensor Systems”, In Proceedings of the ninth ACM

SIGPLAN symposium on Principles and practice of parallel programming,

San Diego, CA, USA, June 2003.

11. W. Heinzelman, A. Murphy, H. Carvalho and M. Perillo, “Middleware to

Support Sensor Network Applications”, IEEE Network Magazine Special

Issue, pp. 6-14, January 2004.

12. P. Bonnet, J.E. Gehrke, and P. Seshadri, “Querying the Physical World”,

IEEE personal Communications, Vol. 7, No. 5, pp. 10-15, October 2000.

13. E. Soutoo, G. Guimaraes, G. Vasconcelos, M. Vieira, N. Rosa, C. Ferraz, L.

Freire, “A Message-Oriented Middleware for Sensor Networks”, 2
nd

International Workshop on Middleware for Pervasive and Ad-Hoc

Computing, October 2004, Toronto, Ontario, Canada.

433690 IT Project Open Sensor Web Architecture: Core Services

 44

14. Mark Gaynor, Steven L. Moulton, Matt Welsh, Ed LaCombe, Austin Rowan,

John Wynne. "Integrating Wireless Sensor Networks with the Grid", IEEE

Internet Computing, vol. 08, no. 4, pp. 32-39, July/August, 2004.

15. M.Ghanem, Y.Guo, J.Hassard, M.Osmond, and M.Richards. “Sensor Grids

for Air Pollution Monitoring”, UK e-Science All Hands Meeting,

Nottingham UK, September 2004.

16. M. Reichardt, “Sensor Web Enablement: An OGC White Paper”, Open

Geospatial Consortium (OCG), Inc, 2005.

17. S.H.L.Liang, V.Tao and A.Croitoru. “Sensor Web And GeoSWIFT- An Open

GeoSpatial Sensing Service”, ISPRS XXth Congress, Istanbul, Turkey, 2004.

18. PB.Gibbons, B. Karp, Y.Ke, S.Nath, S.Seshan, "IrisNet: An Architecture for a

Worldwide Sensor Web" IEEE Pervasive Computing, vol. 2, no 4, 2003, pp.

22-33.

19. SensorML, http://member.opengis.org/tc/archive/arch03/03-0005r2.pdf.

20. Geography Markup Language, version 3, OGC Document Number: 02-023r4,

URL: http://www.opengis.org/.

21. Observation & Measurements, version 0.9.2, OGC Document Number:

03-022r3, http://portal.opengeospatial.org/files/index.php?artifact_id=1324.

22. Sensor Collection Service IPR, OGC 03-023,

http://member.opengis.org/tc/archive/arch03/03-023r1.pdf.

23. Transducer Markup Language, http://www.iriscorp.org/tml.html.

24. Jini
TM

 Specification version 2.0, Sun Microsystems,

http://www.sun.com/software/jini/specs/jini2_0.pdf

25. J. K. Waters, “Web services: The next big thing?”, March 2002,

http://www.adtmag.com/article.asp?id=6124,

26. W3C,“Web Services Architecture”, February 2004,

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/wsa.pdf

27. D. Sosnoski, “XML and Java Technologies: Data binding, Part 1: Code

generation approaches – JAXB and more” Jan 2003,

http://www-128.ibm.com/developerworks/xml/library/x-databdopt/

28. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. “System

architecture directions for networked sensors”. In Proc. ASPLOS-IX,

November 2000.

29. S. R. Madden. “The Design and Evaluation of a Query Processing

Architecture for Sensor Networks”, PhD thesis, UC Berkeley, Decmeber

2003, http://www.cs.berkeley.edu/˜madden/thesis.pdf.

30. H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth,B. Shucker, J.

Deng, and R. Han. “MANTIS: system support for MultimodAl NeTworks of

In-Situ sensors”, In Proc.WSNA'03, 2003. 31. A. Dunkels, B. Gronvall, and T. Voigt. “Contiki - a Lightweight and Flexible

Operating System for Tiny Networked Sensors”, In First IEEE Workshop on

Embedded Networked Sensors, 2004.
32. TinyOS Tutorial 6,http://www.tinyos.net/tinyos-1.x/doc/tutorial/lesson6.html.

33. JAXB specification version 2.0, proposed final draft, download page,

433690 IT Project Open Sensor Web Architecture: Core Services

 45

http://jcp.org/aboutJava/communityprocess/pfd/jsr222/index.html.

34. Apache XMLBeans, http://xmlbeans.apache.org/.

35. D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. “The

nesC language: A holistic approach to networked embedded systems”, In

ACM SIGPLAN Conference on Programming Language Design and

Implementation, 2003.

36. P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and. Scalable

simulation of entire TinyOS applications”, Proceedings of. SenSys’03, First

ACM Conference on Embedded Networked Sensor. Systems, 2003.

37. Crossbow Technology Inc, http://www.xbow.com/.

